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The nonstationary motion of a single wing of arbitrary form with constant
circulation has been studied in detail by Chaplygin [1 ] and Sedov[2].

The present paper considers the unsteady motion of an ideal incom-
pressible liquid around a lattice of profiles of arbitrary form. Per-
turbation of the liquid flow is achieved through vibration and, in the
general case, by small amplitude distortion of the blades. The blades in
the lattice vibrate synchronously, but with an arbitrary phase shift.

The case of constant phase shift from blade to blade is treated in detail.

Vibrations of profiles with a constant circulation are considered
exactly; for those with a variable circulation a quasistationary
technique is used.

Under exact conditions we solve also the problem of steady flow around
the lattice with varying circulations around the profiles.

Examples are given of the calculation of flow due to the vibration of
circles in the lattice and of profiles of a gas turbine.

1. Statement of the problem. Let us consider a lattice, consist-
ing of arbitrary profiles (Fig. 1), in the plane of a complex variable
z= x+ iy. Let the lattice axis coincide with the y axis; the spacing of
the profiles will be designated by t.

We will study the unsteady, potential motion of an ideal incompress-
ible liquid in an infinitely connected srea G, which is the space out-
side the above lattice.
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Nonstationary flow around a lattice of arbitrary profiles 173

Let us assume that an infinite, regular flow from the left strikes
the lattice, while the lattice profiles undergo arbitrary vibrations
with a small amplitude. First, we will consider
a case in which all the profiles vary synchro-
nously with frequency w, but with an arbitrary,
constant phase shift a between adjacent pro-
files.

Let us introduce the complex velocity pu-
tential

Oz dy’ ay dx

7 \T
(://—_ Here u and v are the components of the velo-
t city w of the liquid; the velocity potential
J' ¢ = ¢(x, y, r) and the stream function ¢ = y{x,

y, 7) depend on the coordinates and on time 7.

We divide the functions ¢ and ¢ into sums of
the two functions

Fig. 1.

=g (z,y) +t o (2,9, 1), V=Y(2,%) +¥(z,y, 7 (1.2)

¢, and ¢, do not depend on time, and they solve the problem of the
steady flow past the lattice.

This problem may be considered solved. In the rest of this paper it
is assumed that it is solved by considering a cascade of circles.

The functions ¢,(x, y, r) and ¢,(x, y, r) are the velocity potential
and the stream function of the full perturbed motion of the liquid
caused by the vibration of the profiles. The function ¢, is conveniently
represented in a form analogous to the Kirchhoff form [3 ]

¢ = Uy + Voo + Qs 1+ Fos -+ @os (1.2)

U and V are the velocity components of vibrations of an arbitrary pro-
file along the axes of a fixed system of coordinates, { is the angular
rotation velocity of the profile and I" is the circulation of the velo-
city around the profile. These values depend only on time. Functions ¢,
$pgr Po3 and ¢, depend only on the coordinates of the point at which
the velocity potential is calculated.

The function ¢, is the potential of the flow around the profiles
brought about by vertical traces which, according to the Thomson theorem,
appear when there is a change in the circulation. It is obvious that ¢,
depends both on the coordinates and on time. Below we consider flow with
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constant circulation using an exact procedure or flow with a circulation
which varies with time; always, however, under quasistationary condi-
tions (¢, = 0), which is permissible when low Strouhal numbers are in-
volved.

Correction for the influence of ¢y, may, in view of the linearity of
the problem, may be inrtroduced by superposition.

The boundary conditions at the profiles around which the liquid flows
state the equality at appropriate points of the normal components of
velocity of the contour and the liquid. These conditions are conveniently
written in terms of the function ¢. The value of the function ¢ at a
vibrating profile, found from the requirement Jd¢r/dn =-w,, mst satisfy
the condition [2 ]

p = Uy —Vz — +Q(a® + 42 +const (1.4)

At an infinite distance from the lattice, disturbances caused by
vibrations of the profiles should vanish. Only when the profiles vibrate
in phase and with a change in circulation will the disturbances at in-
finity remain finite on the right side.

The solution of ‘the problem consists in determining the complex po-
tential which satisfies condition (1.4) at the vibrating profiles. The
velocity field is found by means of (1.1); the pressure field is repre-
sented by the Lagrange integral

] .
P=rpo(v) —p 5 — oo (1.5)

The forces and moments acting on a profile are conveniently calculated
according to the general formulas of Sedov for unsteady motion.

2. Derivation of the basic formulas. Before tackling the solu-
tion, let us derive certain general formulas for a special function
having those characteristics which the complex velocity potential in our
problem must have.

In area G we introduce the function F(z, t, a), of a complex variable
z, dependent on two real parameters t and a, and having the following
characteristics:

1. The function F(z, t, a) satisfies the condition of generalized
periodicity in the following sense:

Fz+imt)=e"mF(2)  (n=-41,+2 +3...) (2.1)

Here j is an imaginary unit not interacting with imaginary umnit i.
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2. The function F(z, t, a) has no singular points in area G.
3. The function

F(z,t,a) >0 for z - + oo (@=0) (2.2)
Let us give an integral representation of the function F(z, t, a).

Applying Cauchy’s formula in the infinitely connected area G, taking
into account conditions (2.2), we obtain

ro= g, 3§ 0 -

m=—00 Ly,

Here F,({) denotes the boundary value of the function F(z) at mth
contour L o Comprising a lattice; the integration in (2.3) is carried
out for all contours of the lattice. Let us restrict integration to refer
only to that integration along contour Lj, which will hereafter be de-
signated as basic. Substituting into (2.3) the variables { = {, + imt
and taking advantage of the fact that, according to condition (2.1),

Fin(2) = e7maF o (L)
we obtain (the index 0 in the integration variable is disregarded)
—]'mad
F(2) = o Z Fo Q) e "™"dE (2.4)

z—f —imt
m=—00 L, ;

Interchanging in (2.4) the order of integration and summation (which
is permissible in this case), we obtain

F(Z) —Tﬁgé[z—i—f+r§1<z—e§jn—;ﬁimt + z-—ec—jiimt)]FO(g) dz (2‘5)

The expression in brackets may be transformed and summed

1 2(z—10) €0s ma
A Zm=+(z—c)2/tz_

(2.6)
211 2 m sin ma ich(n—u)z/t_..:rrsh(n—a)z/t
m? 4+ (z—C2/8 T 2 shmz/t Ar shnz/t

We then obtain the final integral formula which expresses the values
of the function F(z) in area G through its values on the basic contour

Fo)=2$F0)0E—1 a ) dt (2.7)

We have introduced q = 2/t and the function &(z, a, q)
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L _sehly(m— a) gz ..shlfs(n—a)qz
(D(“v &, {l) - q( sh 1/2 ngz — :h 1, nqz ) (2.8)

The function ®(z, a, q) has the following basic characteristic:

(D(z+

2im

) = e 29

The function ®(z, a, ¢) has simple poles at the points 2im/q and
breaks down into the simple fractions

]ma e—jma
(D(Z’ %, q) —+ 9 2 (qz+2:m +qz—2im> (2’10)
The function
Dz, a, ) >F(1FTij)e™®™  forr— 4 oo (2.11)

Let us note the special cases

®(z, 0, q) = qgcth/; ngz | const  where a =0
®(z, m, q) = g esch 1/, ngz where * =T
D(z) = /22 where ¢ =0 (¢ = o0)

Let us expand ®(z — {, a, q) in (2.7) into a series of powers of {
[e o]
E (=17 d"® (z) (2.12)

n! dzn

D(iz—1¢, a,q =

n=0
Interchanging the order of summation and integration, we then obtain
from (2.7), (2.8) and (2.12)

F(z) = Z L Nops Jn‘;;,ﬁz) (V= -Z%SF(;) gn—ldg) (2.13)

n=o

We obtain an expansion ®(z, @, ¢) in the vicinity of the poles. First
of all, we note that, on the basis of property (2.9), the expansion in
the vicinity of a pole m differs from the expansion in the vicinity of
® = 0 by only the multiple exp(- jma).

First we expand into a Taylor series (in the vicinity of the pole
m = 0) the expression in parentheses in (2.10)

k+1 2k (— )k 2k-+41
cos mo Z _(?I{_—-X_T z2k—1 l] sin ma Z ——2—2"—2—"_*_—1‘ z2k+1 (2.14)

We disregard here the constant which is unessential for our purposes.
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Substituting this series in (2.10) and changing the order of summa-

tion, we find the expansion of ®(z, a, q) in the vicinity of the pole
m=10

. 1 o Skq2k+1
Dz, 0, 9) = e Z 22):_1 zz"—1 ij 21 o 22k (2.15)
Under these conditions
o0
o = e (o) = (— 1) "":l;;;“l‘ s = sk () = (—1)* 2 s‘;‘k’jj‘ (2.16)

m=1

The series (2.15) must converge all the way to the nearest singular
point; i.e. whenever |z| < t =-2/q.

To obtain an expansion of the function F(z, @, g) into a Laurent

series, we differentiate (2.15) n times with respect to z. After some
transformations, we obtain

(e
"0 (z) _ (—1)"n) e (@2k—1)!
dz" Piiay! s 2%—1 (2k—n —1)!

z2!|'-——7l—l —

o0 2k+1
QY kg @k
—Y zk:' o Th— i (2.17)

The summation over k is carried out here in such a way that the powers
of z are greater than zero (unessential constants may be disregarded).
On the basis of (2.13) and (2.17), F(z) in the vicinity of the pole

n = 0 may now be represented by the series (intermediary transformations
omitted)

Floaq= 3 ET 0T, 55 G0ty

n=—=1 z" n=0 k ’22"-1 Nzk_”zn_
(2k)! g% F1s,
2021 i Nokonp” (218,
n—

The series must converge when | z| < t = 2/q.

3. The unsteady flov around a lattice of circles oscillat-
ing with a phase shift. Consider a lattice of circles with radii
r = 1 oscillating with small amplitude.

The law governing the oscillations of any circle in the lattice may
be written in the following manner:
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U =Ugitw=ma, V=V gpiw=ma (3.1)

The stream function at the circumference must then, according to
(1.4), assume the following form

Y= Upsind—Vqcos6

Here 6 is the polar angle; the multiplier dependent on time is
omitted.

Since the exterior of the lattice of circles is chosen as a canonical
region, let us examine immediately the more general case with a boundary

value ¢

o0

P = 2 8y cos nb - 2 7, sin nb (3.2)
n=1
The complex velocity potemtial f of an unsteady flow without circula-
tion around a lattice of circles should have the same characteristics as
the function F(z, a, ¢). Consequently, outside a lattice of circles, the
complex potential should be expanded into a functional series (2.13) and,
in the vicinity of the pole m = 0, into’ a Laurent series (2.18).

The expansion of F(z, a, q) into a Laurent series in the vicinity of
pole m differs from expansion (2.18), as we should expect from (2.1), by
only the multiple exp(—-:jma).

Consequently, the problem consists in the determination of the co-
efficients N_ in (2.18), needed to satisfy boundary condition (3.2).

Ordinarily, coefficients N must be complex numbers, each with two
imaginary units

Nn = (An + jBn) + i(Ca+ jDy) (3.3)

Substituting (3.3) in (2.18) and separating the imaginary part with
respect to i, we obtain a series into which the stream function iy may be
expanded in the vicinity of pole m = 0.

Comparing the boundary values with those given in (3.2), we arrive at
four systems of infinite equations, from which four series of unknowns
A,, B,, C, and D, may be found:

oo k k+1

- (@h—1D1g%e, & (2k)1 g2 Hs,

( 1‘) (n "—1) ! Cﬂ + ; W 25‘7‘ Z nt 2tk -y bn
et (2&—1)' q2kck 2k—rl

n-—1 2h
~(——i) (fl ——41)! An”*”% W 2k-n‘_z n"’2k 2k——n+1:7n
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- 22k — 1)1 g% o (2k)! g%t s, (3.4)
(=" e = N D+ D —oim Dy — B Apenin = 0

n— (2k — 1)1 ¢° ke (2k)! g%t
(— 1) (n— )'Bn+2———!—2?r—l—k sz—n+§722k—k— Cok—nts =0

Ignoring the question of the convergence of the process of successive
approximations in general, let us note that if B, =D = 0, the systems
belong to a fully regular class.

We observe that the systems fall into two groups of two unknown
series apiece, with unknowns with an even index connected with unknowns
of another series with an odd index.

In practice successive approximations converge very quickly. Calcula-
tions are substantially reduced by the diagonal symmetry of the coeffi-
cients.

The distribution of the velocities at the circumferences in the
lattice is found through the function
v, = —0p/0r for r =1 (3.5)

Here v_ is the circumferential component of the absolute velocity of
the liquid.

Using (3.5), (2.18) and (3.4) we obtain, after transformations which
we omit here,

vs = €08 (0T — ma) 2 {[2(—1)" " n! C — nda} cosnd —

n=1

—2(—=1)""'nl Ap + n7,lsinn b} — (3.6)

0
— 2sin (0T — ma) D) (— 1) n! [D, cosn§ — B, sinn6)

n=:1

Formula (3.6) gives the solution of the problem, since it describes
the distribution of the velocities at any circumference in the lattice
(m 1s the number of the circumference) and at any moment in time.

The radial velocities v_on a circumference are known quantities
according to the specifications of the problem.

Since at a circumference v, = (a¢/rao),=,l, we obtain from (3.6)
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@ = cos (0T — ma) 2 {[2(— )" (n—1)! Cr — 8,] sinnd +

n=1

+ R2(—1)"T(n—1)t 4n + 7, ) cOsnB} — (3.7

— 2sin (@t — ma) 2 (— 1" " (n— 1)1 [Dysinnb - B, cosn 8]

n=1

The distribution of pressures is determined from the Lagrange equa-
tion (1.5) from the known distribution of the potentials (3.7) and the
. 2 2 2 2 2
square of the full velocity, equal to »® = u” + v* = » * + v *.

The field of velocities outside of the lattice may be determined from
(2.7) or by (2.13).

Example. Let us find the distribution of velocity for the perturbation
of a liquid flow caused by the vibration of circles in the lattice in the
direction of its axis with a velocity V = Vb exp jor, Vo = 1,

Given the parameter g = 2/7 = 0.7. We carry out calculations for
phase shifts a = 0, ., n/4. From (1.4) and (3.2) it follows that Bn =
Yp = 0, except that §, = — 1.

a) For a = 0 we find, according to (2.16)

¢ = 1.649, ¢ = —1.082, cg = 1.017, ¢g=—1.004. . ., s, =0

n

It is obvious from (3.4) that 4 = B =D = 0 and that C, =0,
which is in conformity with the considerations of flow symmetry. The co-
efficients C,, _ , are determined from the solution of the first system

(3.4)
C,=—0.714, Cy=—0.0117. ..

The distribution of the absolute velocity vy at the circumferences is
determined from (3.6)

v,=—(0.428 cos § 4- 0.129 cos 36 +.. ) cos QT

b) For a = # we find, according to (2.16),
e = — 0.824, ¢y = 0.946, cg = — 0.985, cq = 0,998, ..., s, =0

It is obvious from (3.4) that An = Bn = Du = 0 and that CZn = 0. The

coefficients C, _ , are determined from the solution of the first system
(3.4}
Cyp=—1.25, C3=0.0192. ..
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The absolute velocity ve at the circumferences is determined from
(3.6)

v, =(—1.52¢c0s 64 0.230cos 3§ — . . .) cos (0T — mn)
c) For a = n/4, according to (2.16)

= 0.575, co = — 0.694, = 0.7086, = —0.707...
sy = — 0.845, se = 0.740, s3 = —0.715, s = 0.709. ..

From (3.4) it follows that
A, =D, =0, B _lzczn_

2n

The coefficients Czn_‘1 are determined from the solution of the first
and fourth systems of equations (3.4)

;= —0.895, Cs; = — 0.0079. .., By, = — 0.0675, B, = 0.00337. .

The distribution of the absolute velocity v at the circumferences is

determined according to (3.6)
—(0.790 cos 9 + 0.095 cos 30 +-. . .) cos (wr—!/)mx 4
+ (0.270 sin 2§ — 0.162 sin 40 - . . .) sin (0T — /g mx)

It is obvious that with such a flow there will be eight groups of
circumferences, at which the distribution of velocities at any given
moment in time will be different. Figure 2 gives curves for the four
characteristic values 8 = wr ~ 1/4 aw,

4. Purely circulatory flow around a lattice of circles
with a phase shift. Let us examine the case of purely circulatory,
steady flow around an immovable lattice of cireles under the condition
that the circulation around the mth circle is equal to I’ = [ge jma

It is clear from the analysis in Sections 1 and 2 that the complex
velocity potential for a given flow may be represented in the following
manner:
da"®(z, a, q)

daz"

=5 (@, qdz+2‘ Nuia (4.1)

v

The expansion of the first member (4.1) in the vicinity of the pole
m = 0 is achieved by integrating (2.15)
n on41

. o?‘ ) 1 S
= - —— LI ___ n+
S(D(z)dz Inz %"3‘:1 B if }_ 22"(2n+1) g2} (4.2)

In the flow we are presently considering, the circumferences of the
lattice represent the stream lines and, consequently, the stream func-
tion at these circumferences assumes constant values.
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The coefficients N, in (4.1) will be double complex numbers of the
form (3.3). In view of the considerations
of flow symmetry A = D, = 0 and B, =
Dy,_., = 0. We will substitute (2.18) and
(4.2) into (4.1) and, separating the part
imaginary with respect to i, we equate it
to zero. We obtain two systems of infinite
equations from which we determine two
series of unknowns C,, and B,, _,

i k
(2k — 1)t e, q?
._(n-"-' 1)!C‘n+ g “_é.é;':i—n—!_ Cgk._.n+
i (2k)! skq‘z"“‘1 g%,
AT gy T T ey (4.3)
o k
(2k — 1)! ¢, q*
«(n-1)!B,.+§k:-——-———2ﬁ_,n! Byn+ Pig. 2.
[ o]
Z (2k) 1 5, g% 11 "
v 2%p) B 281y

On the basis of (4.1), (2.18), (4.2), (3.3) and (4.3) we obtain a
series into which the complex potential of purely circulatory flow in
the vicinity of pole m = 0 can be expanded

oo o0

= flnzti 3 —DICal =z +] X (n——i)!Bn(z"+tZ[R

n=2, 4, 8... n=1, 3, b-..

Multiplying this expression by exp(—:jma), we obtain an expansion inm
the vicinity of pole » and, separating the real part (relative with re-
spect to both imaginary units), we obtain the distribution of the velo-
city potential at the circumferences (r = 1)

[e 0]
q;:%[&—Z(:osm& 2 (n— 1)1 Cpsinnd —
® n==P, 4, 8...
= (4.5)
— 2 sin ma 21 (n —1)! Byeos nb)
n=1, 8, 5...

The distribution of the velocities is obtained by differentiating
with respect to @

o0 o0

vy = -2%“’— [cosma—2cosma D} n!Cpcosnd -+ 2sinma > n!anin4ng]
n=2,4,8... n=1, 3, 5... .
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When examining a quasistationary problem (and in a canonical region)
we must replace sin ma and cos ma by sin (wr ~:ma) and cos (wr ~.ma).

We note that, as follows from (2.13), the velocizy at an infinite
distance from the lattice generally tends to zero. Only when @ = 0 does
the velocity at infinity x » t e have values which are equal, though
opposite in sign.

Example. Let us determine the distribution of velocities at the
circumferences in a lattice of circles when circulation changes from
circumference to circumference with a phase shift equal to: a = 0, » and
w/4. The parameter g = 2/r = 0.7, [\/27 = 1.

a) For a = 0 we obtain Sy = 0 and Bn = 0, From (4.3) we obtain
Cy =0.184, C,=0.00012. . .
Then, from (4.6)
US
\ v, =1+ 0.736 cos 20 — 0.0057 cos 40 4- . . .
o8- b) For a = 7 we obtain s, = 0 and B =0.

From (4.3) we obtain
% C; = 0.110, C4 = 0.000945. . .
1

Then, from (4.6)

Fig. 3 vy = (1 —0.441 cos 20 4 0.046 cos 4§ — . . .) cos mn

¢) For a = w/4 we obtain
Cy=—0.0060, C,=0.00073...
B, = 0.00753, B3 =0.0175. ..

(the coefficient 83 must be greater than the remaining coefficients Bn)

v, = (14 0.240 cos 2 — 0.035 cos 46 4 . . .) cos }/amn +
+ (—0.015sin § — 0.210sin 36 — . . .) sinY/ymn

Figure 3 gives curves for the distribution of velocity along circum-
ferences a = 0 and = = 2. The circumference = = 2 has a flow with a
circulation equal to zero. There are a total of eight groups of circum-
ferences with different velocity distributions.

5. Flow around a lattice of arbitrary profiles vibrating
vith a phase shift. Let us consider the problem of the vibration of
profiles in a lattice with a phase shift. We assume the form of the pro-
files to be arbitrary. If the profiles oscillate with a change in
circulation, the problem is solved by a quasistationary procedure.

The velocity potential ¢(x, y, r) and the stream function ¥{x, y, r)
satisfy the Laplace equation; for this reason we use the conformal
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transformation method.

As a canonical region we select the area outside the lattice of
circles in the plane z.

The relationship between the lattice areas is established by a func-
tional series [4 ]

—1)" a" a
% (= a—(n+1)—‘;z*,:0th7i (®.1)

This series is a special case of the functional series (2.13).
In the vicinity of the poles (5.1) is expanded into the series
g:az—}—z,a—‘n'l+ D) anzn (5.2)
n=1 % n=0

The coefficients of the regular part of the series depend on those of
the principal part

(o] .
(___ 1)7) 22ILBk T \2k
n = %21: 2k —n —1)! nl(T) A—(2k—m) (5.3)

Having set a = ¢’ + ia" a, = a,"-+ ia,% a_ =a_ "+ 1a_,", we
may give the contour of the profile in the lattice by two parametric

equations

E=a'cosbl+ 2 (a_,+a,)cosnb + 2 (a_ —an")sinnb
n=1

n=1
S 5o 6.4
n=a"sind 4+ Z (a_,+ an")cos nf+ Z (an’ —a_ )sinnd
n=1 n=1

6 is the polar angle of the basic circle in the lattice.

The method for determining the coefficients a, and a_ , is described

in[4] and we will therefore consider the series (5.4) as given.

Let us assume that the blades in the lattice achieve arbitrary (small
amplitude) bending and torsional vibrations with an arbitrary constant
phase shift a.

Now we determine (1.4) the boundary values of the stream function
(&, n) at the profiles in the lattice. Substitution there of the para-
metric equations (5.4) gives us the boundary values y{(0) at the circum-
ferences in the canonical region in the form of a trigonometric series
(3.2). The corresponding problem in the canomical region is then solved.
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The distribution of velocities from the noncirculatory (3.6) and the
purely circulatory (4.6) flows at a basic circumference is known. The
magnitude of the circulation around the basic circumference is establish-
ed from the Chaplygin-Zhukovskii postulate for a quasistationary flow.

The above may be extended without gifficulty to the lattice, whose
profiles not only vibrate but are also subject to small deformations.
The boundary value for the function i/ of the deformation motion of normal
velocity v, is established by the relationship d¢/ds = v, (0, 7).

The above problems have involved a phase shift changing from blade to
blade by a constant amount., All of the results can be generalized, which
leads merely to an increase in the calculating labor.

Instead of the basic function ®(z, a, ¢), we may examine a series of
functions P(z, a@., ¢), in each of which a_ = const. Then, in the ex-
7 pansions (2.17) and (4.2) a sign of
\&5 summation over r is added in front,
while the numbers ¢ and s will be
7 summed by two indices k and r.

Example., Let us find the distribu-
tion of velocities at the profiles in
a lattice (Fig. 4), which vibrate with
a phase shift a = » in a direction
perpendicular to the chord.

We omit the preliminary calcula-
tions, which are carried out as de-
scribed above.

Let the components of the vibration
velocities along the axes of the co-
ordinates be Ub = Vo =1,

Fig. 4.
The coefficients of series (3.2),
which represents the boundary values
(0) at the circumference in the lattice, are

8 = —1.020, 8 =-0.461, 8 = -+ 0.0717
84 = — 0.0574, 85 = -+ 0.0119
Yi==+ 0.505, 3=+ 0.129,  73=— 0.0542

Ya = + 0.0188, s = + 0.0093

Vibrations occur with a phase shift a = 7#; therefore, it follows

from (2.16) that sp = 0, and we then find, from (3.4), that Bn = Dn = 0,
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Bubstituting Sn and y, in (3.4) solving the resulting equations (g =
8.853), we obtain C, and 4, (we keep terms with an index no higher than
5).

Cy=—1.535, Cq=—0.209, Cy = 4+ 0.0850, C;=-40.0120, C;= 4 0.000358,

Ay =—0385, Ay=-4+0110, Ay=-00134, A;=0.00411, A=~ 0000275

Further, we solve the first system of Equations (4.3) and obtain

€ = +0.188 To | Ce =—0.00479 Lo
25 n
where the upper index demotes that these coefficients refer to purely

circulatory flow.

Jsing the coefficients thus calculated we obtain the disiribution of
velocities along the circumference by means of (3.6) and (4.6).

Applying the Chaplygin-Zhukovskii condition, we obtain a circulation
f3j29'= 2.41. The final expression of the law governing the distribution
of absolute velocities v, slong the circumference is them given by the
series

v {(0) = 2 C,*cosnf -+ 2 A *sin 2§ 4 2.41
n k13

In this series
Cy* = — 2.050, Cy* = — 1.300, Cg* = 4 0.925, % = <+ Q.210
Ay =+ 0.265,  A* =0.172, Ag* =0, Ag* =+ 0.160

Pigure 5 shows the distribution of absolute velocities at profile v,
with respect to the maximus velocity of the vibration of the profile

Ve= VOFTVS

An evolute curve of the profile is drawn along the abscissa, The
numbers of the points on the abscissa correspond to the numbers of the
points on the profile (Fig. 4). A significant peak in the velocities
appears in the case of flow near the leading edge. A separation of the
flow curves occurs between points 0 and 34,

This graph is an aungiliary one.

Figure 6 gives a representation of how the vibration of the profile
affects the regime of the normal flow around it. The solutlion is ob-
tained by addition of the perturbation flow calculated above, caused by
the vibration of the profiles, and the regular flow (we omit the calcu-
lation) around the lattice. In constructing curves for the distribution
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of velocity "s/'lw' it is assumed that the maximum vibration velocity
is 0.05 of the velocity of the flow striking the lattice.

With such low Strouhal numbers as are typical in such practical prob-
lems, the application of the quasistationary theory produces an entirely
insignificant error.

S B! y 1§
Je 0 4 8 121620 24 28

Pig. 5.

Gl L 2 1 ([} —
30U B IziEm 20 28°

Fig. 6.

In Pig. 6, curve 1 corresponds to the moment in time when the profile,
during vibration, becomes convex; curve 2 when it becomes concave. A
particularly pronounced change is observed at the leading edge. The for-
ward critical point shifts along the profile, while the rear point is
specified as fixed.
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