
CALCULATING TRJZ NONSTATIONARY FLOW AROUNB 
A LATTICE OF ARBITRARY PROFILES WEICE 
VIBRATE WITR AN ARBITRARY PHASE SEIFT 

(K BASCAETU NESTATSIONABNOGO POTOKA VOKBUG BESAETKI 

PROIZVOL'NYKA PBOFILEI, VIBBIBUIUSHCAIKH 

S PROIZVOL'NYM SDVIGOH FAZ) 

PMM Vo1.26, No.1, 1962, pp. 126-137 

G. S. SAYOILOVICA 

(Yoscon) 

(Received October 20, 1961) 

The nonstationary motion of a single wing of arbitrary form with constant 
circulation has been studied in detail by Chaplygin [ 1 ] and Sedov [ 2 1. 

The Present paper considers the unsteady motion of an ideal incom- 
pressible liquid around a lattice of profiles of arbitrary form. Per- 
turbation of the liquid flow is achieved through vibration and, in the 
general case, by small amplitude distortion of the blades. The blades in 
the lattice vibrate synchronously, but with an arbitrary phase shift. 
The case of constant phase shift from blade to blade is treated in detail. 

Vibrations of profiles with a constant circulation are considered 
exactly; for those with a variable circulation a quasistationary 
technique is used. 

under exact conditions we solve also the problem of steady flow around 
the lattice with varying circulations around the profiles. 

Examples are given of the calculation of flow due to the vibration of 
circles in the lattice and of profiles of a gas turbine. 

1. Statement of the problem. Let us consider a lattice, consist- 
ing of arbitrary profiles (Fig. l), in the plane of a complex variable 

z = x + iy. Let the lattice axis coincide with the y axis; the spacing of 

the profiles will be designated by t. 

We will study the unsteady, potential motion of an ideal incompress- 

ible liquid in an infinitely connected srea G, which is the space out- 

side the above lattice. 
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Nonstationary flow around a lattice of arbitrary profiles 173 

Let us assume that an infinite, regular flow from the left strikes 

the lattice, while the lattice profiles undergo arbitrary vibrations 

X 

Fig. 1. 

with a small amplitude. First, we will consider 

a case in which all the profiles vary synchro- 

nously with frequency o, but with an arbitrary, 

constant phase shift a between adjacent pro- 

files. 

Let us introduce the complex velocity po- 

tentiaf 

Here u and v are the components of the velo- 

city w of the liquid; the velocity potential 

qb = q&(x, y, I ) and the stream function $ = fix, 

y, I ) depend on the coordinates and on time r . 
We divide the functions (g and $ into sums of 

the two functions 

‘p - %I fT Y) + 91 (2, Yt 9, 11 = 40 (x2’, Y) -t 4% h, Yt 4 (1.2) 

qSO and q+,, do not depend on time, and they solve the problem of the 

steady flow past the lattice. 

This problem may be considered solved. In the rest of this paper it 

is assumed that it is solved by considering a cascade of circles. 

‘lhe functions c&(x, y, r) and &(x, y, r) are the velocity potential 

and the stream function of the full perturbed motion of the liquid 

caused by the vibration of the profiles. ‘Ihe function qbl is conveniently 

represented in a form analogous to the Kirchhoff form [3 I 

‘PI = ucp,,, -/- ~cpoz + Qgt,, -t- 1904 -t ‘pas (1.3) 

U and V are the velocity components of vibrations of an arbitrary pro- 

file along the axes of a fixed system of coordinates, Cl is the angular 

rotation velocity of the profile and r is the circulation of the velo- 

city around the profile. These values depend only on time. Functions $+,I, 

+oz, $3 and 404 depend only on the coordinates of the point at which 

the velocity potential is calculated. 

The function +OS is the potential of the flow around the profiles 

brought about by vertical traces which, according to the Thomson theorem, 

appear when there is a change in the circulation. It is obvious that #as 

depends both on the coordinates and on time. Below we consider flow with 
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constant circulation using an exact procedure or flow with a circulation 
which varies with time; always, however, under quasistationary condi- 
tions (#J~~ = 01, which is permissible when low Strouhal numbers are in- 
volved. 

Correction for the influence of #a5 may, in view of the linearity of 
the problem, may be introduced hy superposition. 

The boundary conditions at the profiles around which the liquid flows 
state the equality at appropriate points of the normal components of 
velocity of the contour and the liquid. These conditions are conveniently 
written in terms of the function +. The value of the function z,/~at a 
vibrating profile, 
the condition [Z 1 

found from the requirement a$,& =.wn, must satisfy 

q=lJy-vz - $ sz (x" + v2) +const (1.4) 

At an infinite distance from the lattice, disturbances caused by 
vibrations of the profiles should vanish. Only when the profiles vibrate 
in phase and with a change in circulation will the disturbances at in- 
finity remain finite on the right side, 

'Ihe solution of the problem consists in determining the complex po- 
tential which satisfies condition (1.4) at the vibrating profiles. The 
velocity field is found by means of (1.1); the pressure field is repre- 
sented by the Lagrange integral 

p = p. (z) - p 2 - $- p (u” J- 9) (j-5) 

'Ihe forces and momants acting on a profile are conveniently calculated 
according to the general forrwlas of Sedov for unsteady motion. 

2. Derivation of the basic formulas. Before tackling the solu- 
tion, let us derive certain general formulas for a special function 
having those characteristics which the complex velocity potential in our 
problem must have. 

In area G we introduce the function F(z, t, a), of a complex variable 
z, dependent on two real parameters t and a, and having the following 
characteristics: 

1. 'lhe function F(z, t, a) satisfies the condition of generalized 
periodicity in the following sense: 

F (z + imt) = e-j-F (z) (m=f1,*2,+3...) (2.1) 

Here j is an imaginary unit not interacting with imaginary unit i. 
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2. ‘Ihe function F(z, t, a) has no singular points in area G. 

3. lbe function 

F(z, t, a)+0 for z -+ * 00 (a # 0) (2.2) 

Let us give an integral representation of the function F(z, t, a). 

Applying Cauchy's formula in the infinitely connected area G, taking 
into account conditions (2.2), we obtain 

F'(z) = &- 5 4 F;'5'; (2.3) 
m=--03 L, 

Here F,(c) denotes the boundary value of the function F(z) at mth 
contour L,, comprising a lattice; the integration in (2.3) is carried 
out for all contours of the lattice. Let us restrict integration to refer 
only to that integration along contour L,, which will hereafter be de- 
signated as basic. Substituting into (2.3) the variables 5.=-c,, + int 
and taking advantage of the fact that, according to condition (2.11, 

we obtain (the index 0 in the integration variable is disregarded) 

is 
Interchanging in (2.4) the order of integration and summation (which 
permissible in this case), we obtain 

F, (5) = e-j-F, (Lo) 

'lbe expression in brackets may be transformed and suovaed 

G-9 

'We then obtain the final integral formula which expresses the values 
of the function F(z) in 

F (2) 

area G throngh its values on the basic contour 

= & $ F, (5) @ (2 - 5, a, d & 
L 

We have introduced q = 2/t and the function tiz, a) q) 

(2.7) 
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(2.8) 

'Tbe function @(z, Q, q) has the following basic 

a)(~. + 7) = p-jma@ (z) 

The function Q(z, a, q) has simple poles at the 

breaks down into the simple fractions 

characteristic: 

(2.9) 

points 2im/q and 

(2.10) 

The function 

@((z, a, q)-+* (1 r ij) eTa*x for 2--r +m (2.11) 

Let us note the special cases 

CR@, 0, q) = q cth1/2 nqz + cod where a =0 

@(z, n, q) = qcsch’/2nqz where az3t 

(D(z) = '/z3qz rhereq=O(t=OO) 

Let us expand @(z - c, a, q) in (2.7) into a series of powers of [ 

Interchanging the order of sumnation and integration, we then obtain 

from (2.7), (2.8) and (2.12) 

O5 (-1)” F(z)==& 2 --J4vN,+, T (k = & SF(P) 5-c) (2.13) 
nzo . 

We obtain an expansion @(z, Q, q) in the vicinity of the poles. First 

of all, we note that, on the basis of property (2.91, the expansion in 

the vicinity of a pole I differs from the expansion in the vicinity of 

I = 0 by only the multiple exp( --j~a ). 

First we expand into a Taylor series (in the vicinity of the pole 

I = 0) the expression in parentheses in (2.10) 

(2.14) 

We disregard here the constant which is unessential for our purposes. 
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Substituting this series in (2.10) and changing the order of sma- 
tion, we find the expansion of @(z, a, q) in the vicinity of the pole 
m=O 

2k+l 

22k-1_ ij 5 ?f& ztk 

k=l 

(2.15) 

Under these conditions 

cos ma 
ck=c&) = (-l)k+'jj 7, Sk = s&(a) = (- i)kjls$! (2.16) 

-1 

The series (2.15) must converge all the way to the nearest singular 
point; i.e. whenever 12 1 < t =-2/q. 

To obtain an expansion of the function F(z, a, q) into a Laurent 
series, we differentiate (2.15) n times with respect to z. After some 
transformations, we obtain 

d-3 (z) 
p= 

c0 925, 

dz" 
‘-z;;ln! + ; 22k-’ ,,j’“,” ;, , Z2k--n--1 _ 

-iis- - 
sli92”+1 (2k) ! 

k 
22k (2k-m n),! Z2k--n (2.17) 

The sumnation over k is carried art here in such a way that the powers 
of z are greater than zero (unessential constants may be disregarded). 

On the basis of (2.13) and (2.17), F(z) in the vicinity of the pole 
A = 0 may now be represented by the series (intermediary transformations 
omitted) 

O” (-l)n--l (n-lJ!N, 
F (z, a, a) = 2 

Zn ?I=1 
N2k__nZn- 

(2k) ! 92k+‘s 

n! 22k 
k 'N2k_-n+lzn 

n=O k 
(2.18; 

The series must converge when 121 < t = Z/q. 

3. 'lhe unsteady flow around a lattice of circles oscillat- 
ing with a phase shift. Consider a lattice of circles with radii 
r = 1 oscillating with small amplitude. 

'Ibe law governing the oscillations of any circle in the lattice may 
be written in the following manner: 
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u _- U&j t@+-md, v = jf&j to+--n=f 

‘ihe stream function at the circumference must then, 

(1.4), assume the following form 

I@ = CrosinO--V1/,cosB 

Here 8 is the polar angle; the multiplier dependent 
omitted. 

(3-f) 

according to 

on time is 

Since the exterior of the lattice of circles is chosen as a canonical 
region, let us examine immediately the more general case with a boundary 
value II; 

a3 M 

9 = 23 6ncoYn0 + 2 r,sin nFI (3.2) 
7X=1 Tl=, 

‘Ihe complex velocity potential f of an unsteady flow without circula- 
tion around a lattice of circles should have the same characteristics as 
the function F(z, a, 4). Consequently, outside a lattice of circles, the 
complex potential should be expanded into a functional series (2.13) and, 
in the vicinity of the pole RI =.O, into’s Laurent series (2.18). 

Ihe expansion of F(z, a, q) into a Laurent series in the vicinity of 
pole III differs from expansion (2.18), as we should expect from (2.1), by 
only the multiple exp( -:jna ). 

Consequently, the problem consists in the determination of the co- 
efficients IV,, in (2.18), needed to satisfy boundary condition (3.2). 

Ordinarily, coefficients N, must be complex numbers, each with two 
imaginary units 

N, = (A, + is,) + i (G + i&J (3.3) 

Substituting (3.3) in (2.18) and separating the imaginary part with 
respect to i, we obtain a series into which the stream function $ may be 
expanded in the vicinity of pole n = 0. 

Waring the boundary values with those given in (3.2)) we arrive at 
four systems of infinite equations, from which four series of unknowns 
A,, B,, C, and Da may be found: 

O” (2k- l)! q2kck 
(--- r-‘(a -21 f cn + 2 

k 

n, 22k_-1 C,k_, + ;(zk)jy:htlsk B2x_n+l = 8, 
k 

ca (2k - 1) ! qzkck 
-(-I)“--‘(n---j)! A,,+2 n,22k_1 

k . 
A2k_n_-$f!?> &k--n+1 = 7, 

k 
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A _ (3.4) 
2k n+l = f-) 

O” (2/c - I)! qZke 
(--I)“-‘(n - I)! &z+ x 

O” (2/c)! p+‘s 

’ &k--n + 2 k n, 22k_-1 &k--n+, = 0 

k * k R ! 22k 

Ignoring the question of the convergence of the process of successive 

approximations in general, let us note that if B, =.D, I=. 0, the systems 

belong to a fully regular class. 

We observe that the systems fall into two groups of two unknown 

series apiece, with unknowns with an even index connected with unknowns 

of another series with an odd index. 

In practice successive approximations converge very quickly. Calcula- 

tions are substantially reduced by the diagonal s-try of the coeffi- 

cients. 

The distribution of the velocities at the circumferences in the 

lattice is found through the function 

v,=--ag/ar for 

Here vS is the circumferential component 

the liquid. 

Using (3.51, (2.18) and (3.3) we obtain, 

we omit here, 

co 

r =I (3.5) 

of the absolute velocity of 

after transformations which 

us = cos (oz - ma) 2 { [2 (- l)+l II I C, - n&J cos nf3 - 
%=l 

- [ 2 (- I)“-I n ! A,, + ny,] sin n 0) - (34 
00 

- 2 sin (COT - ma) 2 (- l)“-l n! [D, cosn0 - B, sin II fl] 
*=>I 

Formula (3.6) gives the solution of the problem, since it describe6 

the distribution of the velocities at any circumference in the lattice 

(n is the number of the circumference) and at any moment in time. 

‘Ihe radial velocities vr on a circmference are known quantities 

according to the specifications of the problem. 

Since at a circumference vS = (d+/r d 0) r-_ I, we obtain from (3.6) 
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cp = cos (6.N - ma) z { [2 (- l)+l (n - I)! C, - S,] sin nO + 
lI=l 

+ [2(-l)“-*(n-l)!A,+~,]cosne} - (3.7) 
al 

- 2 sin (oz. - mcc) Z (- l)n-l (n - 1) I [II, sin &I + B, cos n 81 
n-l 

The distribution of pressures is determined from the Lagrange equa- 
tion (1.5) from the known distribution of the potentials (3.7) and the 
square of the full velocity, equal to w2 = tL2 + Y2 = YS2 + I$ 

‘Ihe field of velocities outside of the lattice may he determined from 
(2.7) or by (2.13). 

Example. Let us find the distribution of velocity for the perturbation 
of 8 liquid flow caused by the vibration of circles in the lattice in the 
direction of its axis with a velocity V = V. exp j or, V,, = 1. 

Given the parameter q = 2/r = 0.7. We carry out calculations for 

phase shifts a = 0, ,,, n/4. From (1.4) and (3.2) it follows that a,, = 

y,, = 0, except that 6, = - 1. 

a) For a = 0 we find, according to (2.16) 

Cl = 1.645, c.J = - 1.082, cg -- 1.017, cp = - 1.004. . . ( sn = 0 

It is obvious from (3.4) that A,, = Bn = D, = 0 and that C,, = 0, 

which is in conformity with the considerations of flow symmetry. The co- 

efficients C,,_ 1 are determined from the solution of the first system 

(3.4) 
Cl = - 0.714, c~=-o.o117., . 

The distribution of the absolute velocity vQ at the circumferences is 

determined from (3.6) 

V, = - (0.428 cos 0 + 0.129 cos 39 + . . .) cos COT 

b) For a = R we find, according to (2.16), 

Cl = - 0.824, r2 = 0.946, CQ = - 0.985, c4 = 0.998, . . . , s, = 0 

It is obvious from (3.4) that A, = B,, = D, = 0 an’d that C,,, = 0. The 

coefficients C2,_ 1 are determined from the solution of the first system 

(3.4) 
Cl = - I.“? -* 3 c3 = 0.0192. . . 
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The absolute velocity vs at the circumferences is determined from 

(3.6) 

vg = (- 1.52 cos 6 + 0.230 cos 36 - . . .) cos (UT - mn) 

c) For o = n/4, according to (2.16) 

Cl = 0.575. c2 = - 0.694, CQ = 0.706, CI = - 0.707. . . 
s1 = - 0.845, s2 = 0.740, s3 = - 0.715, sq = 0.709. . . 

From (3.4) it follows that 

A,=D,=O, B 2n-_1= Czn = 0 

The coefficients Cg,__.l are determined from the solution of the first 
and fourth systems of equations (3.4) 

S1 = - 0.895, c3 = - 0.00795. . . , B2 = - 0.0675, BP = 0.00337. . 

The distribution of the absolute velocity us at the circumferences is 

determined according to (3.6) 
vg = - (0.790 cos 6 + 0.095 cos 38 +. . .) cos (O?--‘/&m + 

+ (0.270 sin 26 - 0.162 sin 46 f . . .) sin (or -l/a mn) 

It is obvious that with such a flow there sill be eight groups of 
circumferences, at which the distribution of velocities at any given 
moment in time sill be different. Figure 2 gives curves for the four 

characteristic values /!? = or - l/4 as. 

4. Purely circulatory flow around a lattice of circles 
with a phase shift. Let us examine the case of purely circulatory, 

steady flow around an immovable lattice of circles under the condition 

that the circulation around the nrth circle is equal to l?s = roe iso 

It is clear from the analysis in Sections 1 and 2 that the complex 

velocity potential for a given flow may be represented in the following 

manner: 

(4.1) 

The expansion of the first member (4.1) in the vicinity of the pole 

m = 0 is achieved by integrating (2.15) 

In the flow we are presently considering, the circumferences of the 

lattice represent the stream lines and, consequently, the stream func- 

tion at these circumferences assumes constant values. 
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The coefficients.N, in (4.1) will be double kmplex nuwbers of the .- 
form (3.3). In view of the considerations 

of flow symetry A, = D, = 0 and Bzn = 
D P 0. We will substitute (2.18) and 

(??j’ihto (4.1) and, separating the part 

imaginary with respect to i, we equate it 

to zero. We obtain two systems of infiaite 

equations from which we determine two 

series of unknowns C,, and B2n-.1 

-(n- 
* (2k - 1) ! ckq2” 

f)%+ 2 22k_lnr &k--n+ 
k 

a%/% -- 
“+I - 2n-+ 

(4.3) 

-(n-- 
O3 (Zk- t)! ,kq2k 

l)lBn+c 
k 

22R_ln, &--n-i- 

+z) 

O3 (2k) ! skq2*+ e 4mC@4)/2 

22k n! 
2k 

_ 

n+l = 

k 
2-l n 

Fig. 2. 

On the basis of (4.11, (2.18), (4.21, (3.3) and (4.3) we obtain a 

series into which the complex potential of purely circulatory flow in 

the vicinity of pole .m = 0 can be expanded 

f= &[lnz+i ; (n-l)!C,(z*-z-“)+j 5 
n=2. 4, 6... n==l, 3. s... 

(n-l)rB,(z’+;~q 

~tiplyi~ this expression by exp( -:jro ), we obtain an expansion in 

the vicinity of pole Al and, separating the real part (relative with re- 

spect to both imaginary units), we obtain the distribution of the velo- 

city potential at the circumferences (r = 1) 

‘Ihe distribution of the velocities is obtained by differentiating 

with respect to 8 
a, co 

vd = $- [cosma-2609 ma 2 n! cnCOSne + 2sinma 2 n I B, sin nej 
n=2. 4. cl... n=1, 3. K... (4.6) 
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When examining a quasistationary problem (and in a canonical region) 
must replace sin ma and cos no by sin (or -:mu) and cos (or -.ma). 

We note that, as follows from (2.13), the velociiy at an infinite 
zero. Only when a = 0 does 
which are equal, though 

distance from the lattice generally tends to 
the velocity at infinity x + fao have values 

opposite in sign. 

Bxaapls. Let us determine the distribution of velocities at the 
circumferences in a lattice of circles when circulation changes from 
circumference to circumference rith a phase shift equal to: a = 0. v and 
n/4. The parameter Q = 2/r = 0.7. r,/21r = 1. 

a) For a = 0 we obtain s,, = 0 and Bn = 0. From (4.3) we obtain 

cp = 0.184, Cd = 0.00012. . . 

Then, from (4.6) 

Us 
I 

0.8 

04 

EL 

vS = I+ 0.736~0~29 -0.0057cos46 + . . . 

b) For a = R we obtain s,, = 0 and B,= 0. 
From (4.3) we obtain 

5 
cz = 0.110, c, = 0.090945. . . 

0 
2 I9 Then, from (4.6) 

Fig. 3. 
vg = (I-0.441cos26 f0.046~0~46 - . ..)cosmn 

c) For a = v/4 we obtain 

ca = - 0.0080, CA = 0.00073. . . 

B1 = 0.00753, B3 = 0.0175. . 

(the coefficient B, must be greater than the remaining coefficients B,) 

vS = (1 + 0.240 cos 29 - 0.035 cos 49 + . . .) COS~/~ mrc + 

+ (- 0.015sin 6 -0.210sin 39 - . . .) sin’/4 mn 

Figure 3 gives curves for the distrfbation of velocity along circau- 
ferences a = 0 and a = 2. The clrcauference s = 2 has a flow with a 
circulation egual to zero. There are a total of eight groaps of circam- 
ferences rith different velocity distributions. 

5. Flow around a lattice of arbitrary profiles vibrating 

with a phase shift. Let as consider the problem of the vibration of 
profiles in a lattice with a phase shift. We assume the form of the pro- 
files to be arbitrary. If the profiles oscillate with a change in 
circulation, the problem is solved by a quasistationary procedure. 

The velocity potential #J(x, y, I) and the stream function Hz, y, r 1 
satisfy the Laplace equation; for this reason we use the conformal 



184 G.S. Soaoi lovich 

transformation method. 

As a canonical region we select the area outside the lattice of 

circles in the plane z. 

'Ihe relationship between the lattice areas is established by a func- 

tional series [4 I 

'Ihis series is a special case of the functional series (2.13). 

In the vicinity of the poles (5.1) is expanded into the series 

5 = az + 5 UT + $j a,zn (5.2) 
TZ=l n=o 

The coefficients of the regular part of the series depend on those of 

the principal part 

(5.3) 

Having set a = a' + ia*;- a, = a,'-+ ia,‘<,- a_,n=.a_,n’.+. ia_:,“, we 
may give the contour of the profile in the lattice by two parametric 

equations 

5 = a'cosflf i (a._,+ a,')cosnO + s (~:~--a$) sinnO 
n=i n=1 

q = d sin8 + i (uL,+ a,")cosnOf 5 (a,'-u_JsinnO 
*=1 n=1 

(5.4) 

0 is the polar angle of the basic circle in the lattice. 

'Ihe method for determining the coefficients an and a_:, is described 

in 14 ] and we will therefore consider the series (5.4) as given. 

Let us assume that the blades in the lattice achieve arbitrary (small 

amplitude) bending and torsional vibrations with an arbitrary constant 

phase shift a. 

Now we determine (1.4) the boundary values of the stream function 

+(<5, q) at the profiles in the lattice. Substitution there of the para- 

metric equations (5.4) gives us the boundary values $(/(e) at the circum- 

ferences in the canonical region in the form of a trigonometric series 

(3.2). The corresponding problem in the canonical region is then solved. 
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‘Ihe distribution of velocities from the noncirculatory (3.6) and the 
purely circulatory (4.6) flows at a basic circumference is known. ?he 
magnitude of the circulation around the basic circumference is establish- 
ed from the Chaplygin-Zhukovskii postulate for a quasistationary flow. 

The above may be extended without difficulty to the lattice, whose 
profiles not only vibrate but are also subject to seal1 deformations. 
The boundary value for the function $ of the deformation motion of normal 
velocity un is established by the relationship ail///as = ~~(8, r). 

The above problems have involved a phase shift changing from blade to 
blade by a constant amount. All of the results can be generalized, which 
leads merely to an increase in the calculating labor. 

Instead of the basic function @(r, Q, q), we may examfne a series of 

functions a( z, ar, q), in each of which 4r = con&. Then, in the ex- 

pansions (2.1’7) and (4.2) a sign of 
summation over r is added in front, 
while the numbers c and s will be 
sammed by two indices k and r. 

Evampls. Let us find the distribu- 
tion of velocities at the profiles in 
a lattfce (Fig. 4), which vibrate with 
a phase shift a = ZT in a direction 
perpendicular to the chord. 

We omit the preliminary calcula- 
tions, which are carried out as de- 
scribed above. 

Fig. 4. 

Let the components of the vibration 
velocities along the axes of the co- 
ordinates be U. = Y0 = 1. 

The coefficients of series (3.2). 
which represents the boundary values 

~(~) at the circumference in the lattice, are 

61 = - 1.020, 6% = + 0.161, 83 = -j- 0.0717 

64 = - 0.0574, 85 = + 0.0119 

71= + 0.505, Tz = _t 0.129, r3 = - 0.0542 

ya = + O.Oi88, 15 = + 0.0093 

Vibrations occur with a phase shift a = n; therefore, it follows 
from (2.16) that Sk = 0, and we then find. from (3.4), that B, = D, = 0. 
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6ubstitotiag 6, and ya in (3.4) solving the resulting equations (g = 
6.363), we obtain Ca and A, Cve keep term utth au index uo higher than 
61, 

C1 = - 1.535, c* = - 0.209, cs = + 0.0956, C, = -+ 0.0120, Cs = + 0.000358, 

A1 = - 0.385, Aa = + 0.110, AS = + 0.0134, Aa = -#- 0.00411, As = - O.OiNX75 

Further, we solve the first systeo Qf EQuations (4.3) and obtain 

C,O = + 0.188 2 * ca Ib =-o.oo4792~... 

where the u~par inder denotes that these coefficients refer to purely 
circalatorf flow. 

Using the coefficiants thus csfcaiated we obtain the distribution of 
velocities along the circuuference by ueaus of (3,6) and (4.6). 

Appl~lng the Chaplygin-Zhukovskii condition, we obtain a circulation 
rei3r = 3.41. The final expression af the law governing the distribution 
of absolute velocities ug along the circumference ia then given by the 
series 

In this series 

cl* = - 2.056, Ca* zz - 1.306, Gs* = f 0.925, f74* = _t 0.220 

Al’ = + 0.265, Aa* = 0.152, As* = 0, Aa* = + 0.160 

Figure 5 shous the distribution of absolute velocities at profile us 
with rSSpeC% tQ the ua~imuu TelQCFty Qf the vibration Of the PrQffli? 

Au evolute curve af the profile is drawn along the abscissa. The 
numbers of the points on the abscissa correspon? to the nuubers of the 
point8 on the profile (Fig. 4). A siguificant peak in the velocities 
appears in the case of flow near the leading edge. A separation of the 
flow curves occurs between points 6 sud 34. 

This graph is an auxiliary one. 

Figure 6 gives a reprerrentattiaa of how the vibration of the prOfile 

affects the regiae of the normal flow around it. The solution is ob- 
tained by addition of the perturbation flow calculated above, CaUSed by 
the vibration of the profiles, and the regular flaw (we omit the calcn- 
lation) around the lattice. In eonst~ucting curves for the distribution 
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of velocity vz/wla,, it is assumed that the maximum vibration velocity 

is 0.05 of the velocity of the flow striking the lattice. 

With such low Strouhal numbers as are typical in 

lens. the application of the quasistationary theory 

insignificant error. 

6.0 

4.0 

2.0 

I 

ii8 

3 

L 2 

7: 

such practical prob- 
producesan entirely 

IH, , , , I 

32 0 4 8 12 lh0 24 28 ’ 

Fig. 8. 

In Fig. 8, curve 1 corresponds to the moment in time when the profile, 

during vibration. becomes convex; carve 2 when it becomes concave. A 

particularly pronounced change is observed at the leading edge. The for- 

ward critical point shifts along the profile, while the rear point is 

specified as fixed. 
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